Discontinuous Legendre Wavelet Galerkin Method for One-Dimensional Advection-Diffusion Equation

نویسندگان

  • Xiaoyang Zheng
  • Zhengyuan Wei
  • X. Y. Zheng
  • Z. Y. Wei
چکیده

This paper presents discontinuous Legendre wavelet Galerkin (DLWG) approach for solving onedimensional advection-diffusion equation (ADE). Variational formulation of this type equation and corresponding numerical fluxes are devised by utilizing the advantages of both the Legendre wavelet bases and discontinuous Galerkin (DG) method. The distinctive features of the proposed method are its simple applicability for a variety of boundary conditions and able to effectively approximate the solution of PDEs with less storage space and execution. The results of a numerical experiment are provided to verify the efficiency of the designed new technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Galerkin Method for the Numerical Solution of the Advection-Diffusion Equation by Using Exponential B-splines

In this paper, the exponential B-spline functions are used for the numerical solution of the advection-diffusion equation. Two numerical examples related to pure advection in a finitely long channel and the distribution of an initial Gaussian pulse are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.

متن کامل

The Legendre Wavelet Method for Solving Singular Integro-differential Equations

In this paper, we present Legendre wavelet method to obtain numerical solution of a singular integro-differential equation. The singularity is assumed to be of the Cauchy type. The numerical results obtained by the present method compare favorably with those obtained by various Galerkin methods earlier in the literature.

متن کامل

A Runge – Kutta discontinuous Galerkin conservative level set method

We present a Runge-Kutta discontinous Galerkin (RKDG) method to solve the level set advection equation arising in the conservative level set method. We show results obtained using the method of manufactured solutions demonstrating k + 1 order accuracy for k-th order Legendre polynomial basis functions. The RKDG conservative level set method yields superior results compared to standard finite di...

متن کامل

Space-time radial basis function collocation method for one-dimensional advection-diffusion problem

The parabolic partial differential equation arises in many application of technologies. In this paper, we propose an approximate method for solution of the heat and advection-diffusion equations using Laguerre-Gaussians radial basis functions (LG-RBFs). The results of numerical experiments are compared with the other radial basis functions and the results of other schemes to confirm the validit...

متن کامل

Discontinuous Galerkin methods for first-order hyperbolic problems

In this paper we consider discontinuous Galerkin (DG) finite element approximations of a model scalar linear hyperbolic equation. We show that in order to ensure continuous stabilization of the method it suffices to add a jump-penalty-term to the discretized equation. In particular, the method does not require upwinding in the usual sense. For a specific value of the penalty parameter we recove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015